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Calculated numerical results are presented for laminar buoyancy-induced flows driven 
by thermal transport to or from a vertical isothermal surface in cold pure and saline 
water wherein a density extremum arises. The present calculations specifically explore 
the consequences of temperature conditions wherein the buoyancy force reverses 
across the thermal region owing to the presence of a density extremum within the 
region. Such conditions commonly occur in terrestrial waters and in technological 
processes utilizing cold water. The linear approximation of density dependence on 
temperature, used in conventional analysis, is here replaced by a very accurate non- 
linear density equation of state for both pure and saline water. This permits an 
accurate treatment of such flows for bounding temperatures up to 20 "C a t  ambient 
salinity and pressure levels from 0 to 40 p.p.t. and 1 to 1000 bars, respectively. The 
results may be applied to the melting or slow freezing of a vertical ice surface in pure 
water as well as to a heated or cooled vertical isothermal surface in pure or saline water. 
For example, buoyancy force reversals arise for a vertical ice surface a t  0 "C melting 
in fresh water between 4°C and 8°C a t  atmospheric pressure. Temperature con- 
ditions for which buoyancy force reversals occur are of special interest because of 
the resulting anomalous flow behaviour and low surface heat-transfer rates. The tran- 
sition from conditions with no buoyancy-force reversal to those resulting in a large 
buoyancy-force reversal is accompanied by as much as 50 % decrease in surface heat 
transfer. This produces a corresponding trend in the melt rate of a vertical ice surface 
in pure water. Sufficiently strong buoyancy force reversals are found to cause local flow 
reversal either a t  the edge of the flow layer or near the surface. Conditions are deter- 
mined for which flow reversals occur a t  each of these locations. These local flow 
reversals are the precursors of convective inversion, that is, of the reversal of the 
net flow direction with changing ambient. medium temperature. Limits on conditions 
for convective inversion are determined. Calculated transport is compared with 
previous experimental results, with good agreement throughout the several regions 
of such complicated flows. The calculations indicate that such flows are relatively 
very weak. However, their form may lead to early laminar instability. 
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1. Introduction 
Buoyancy-induced flows in cold pure and saline water are a very common occurrence 

in our environment and in many processes in technology. The mechanisms of such flows 
are often considerably complicated by the occurrence of a density extremum with 
temperature variation. Consider, for example, a surface at a temperature of 8 "C in 
ambient pure water a t  1 bar pressure and a t  a uniform temperature of 2 "C. Near the 
surface, the fluid is less dense than the ambient and the buoyancy force is upward. 
However, since the extremum for pure water a t  1 bar occurs a t  about 4 "C, the fluid in 
the outermost portion of the thermal-transport region is more dense than the ambient. 
The buoyancy force there is downward. Hence, this psi1 of bounding temperatures 
results in buoyancy-force reversal across the thermal-diffusion region. Such tempera- 
ture conditions are very common. I n  addition, these kinds of complications are also 
found in cold water to  high pressure and even a t  moderate salinity. The extremum 
persists, before an equilibrium-phase interface, to a pressure of about 300 bars. I n  
saline water a t  1 bar, it is still found to  a salinity s of about 2 6 x 0  (p.p.t.). Even beyond 
these limits, the density variation of water, in tending toward an extremum, remains 
strongly nonlinear. 

As a consequence, a linear approximation of the temperature effect on density may 
not be used t,o estimate the motion-driving buoyancy force F = gfp, -p ) ,  where p, and 
p are a reference density and the local density in, for example, a thermal transport 
region in the fluid. 

Gebhart & Mollendorf (1  978) summarize earlier studies of such convective motions 
and give a comprehensive method of analysing such flows in thermally-buoyant pure 
and saline water. The formulation and results apply to a flow generated adjacent to a 
vertical surface a t  temperature to, in a quiescent ambient medium a t  t,. These results 
are compared with data from the ice-melting experiments of Bendell & Gebhart (1976)) 
with close agreement. 

I n  more recent studies, other vertical laminar boundary-layer flows in pure and 
saline water have been analysed in the manner of Gebhart & Mollendorf (1978). 
Qureshi & Gebhart (1978) have computed similarity solutions for the flow adjacent to a 
vertical uniform-heat-flux surface in ambient water a t  t,, the temperature correspond- 
ing to  maximum density. The axisymmetric and plane plume flows in water at t ,  have 
been analysed by Mollendorf, Johnson & Gebhart (1980). The perturbation analysis of 
Gebhart, Carey & Mollendorf (1980) extends the results of Qureshi & Gebhart (1978) 
and Mollendorf, Johnson & Gebhart (1980) to ambient water temperatures not 
equal to  t,. 

The bases of these analyses are two. The first is a new state equation for the density 
of pure and saline water, developed by Gebhart & Mollendorf (1977)) which is very 
accurate and quite simple for convective analysis. It contains only one temperature 
term. It is an expansion of density p(t ,s,p) around the temperature a t  which the 
extremum occurs, t ,(s,p), a t  given salinity and pressure levels, s and p .  The equation 
was developed as a fit of the most modern density information, the correlation of Fine 
& Millero (1973) for pure water and the data of Chen & Millero (1976) for saline water. 
I n  the range of conditions from 0 to  20 "C, to 1000 bars, the r.m.s. fit for pure water is to 
3.5 p.p.m. For saline water, for the same t a n d p  ranges, the r.m.s. fit is 10.4 p.p.m., to  a 
salinity of 40%,. Recall that  oceanic salinity is about 35%,. Thus the equation encom- 
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passes a preponderant fraction of all terrestrial surface waters. The form of the equa- 
tion is 

p(t, 8 , ~ )  = pm(s,p)  [ ~ - E ( s , P )  Jt-tm(s,p) I's,p)I (1)  

where pm(s,p), a(s,p),  tm(s,p) and q(s,p) were determined to give the best fit, in the 
r.m.s. sense, to the density information. The functional forms and evaluation of these 
four quantities are given in detail by Gebhart & Mollendorf (1977, 1978). 

The second aspect of the treatment for thermally buoyant flows is the transforma- 
tion of the boundary region flow equations to equations in terms of similarity variables. 
The present study considers the laminar buoyancy-induced flow adjacent to a heated 
or cooled vertical isothermal surface in cold water. The compact formulation used here 
is that of Gebhart & Mollendorf (1978). Salinity and static pressure are assumed con- 
stant throughout the flow. Gebhart & Mollendorf (1978) have shown that, for the 
isothermal surface condition, this formulation yields similarity solutions. These 
depend only on q(s,p), the Prandtl number Pr, and R = (t,(s,p)-t,)/(t,-t,). The 
formulation therefore applies to flow adjacent to a heated or cooled isothermal surface 
for any temperature, salinity and pressure conditions within the range of validity of the 
density correlation. It may also be applied to the melting or slow freezing of a vertical 
ice surface in pure water (s = 0).  For ice melting or freezing in saline water, salinity 
buoyancy and diffusion effects must be taken into account. Such effects are not in- 
cluded here. The present analysis applies only to flows driven by thermal buoyancy 
in cold pure or saline water. It does not apply to ice melting or freezing in saline 
water. 

Over the range of bounding temperatures considered here, the buoyancy force will be 
bi-directional across the thermal layer. The buoyancy force will act in the upward 
direction near the surface, while in the outer portion of the thermal layer it will act 
downward. The variation of the buoyancy force across the thermal boundary-layer 
depends primarily on the relation of the values of the surface temperature, to, and the 
ambient temperature, t,, to t,(s,p). The results of Gebhart & Mollendorf (1978) indi- 
cate that for R = (t, - t,)/(to - t ,) < 0, the buoyancy force and flow are upward. For 
R 2 0.5, they are both downward. 

Gebhart & Mollendorf (1978) have computed numerical results for a wide range of R 
outside the interval 0 < R < 0.5, for various values of Prandtl number and q(8,p). 
However, numerical solutions were not obtained for R between 0 and 4. For all such 
flows the buoyancy force is bi-directional across the thermal layer. The mos't compli- 
cated flow and thermal transport characteristics occur in this range. Convective inver- 
sion is defined as reversal of the direction of net mass flow with changing R. Clearly, for 
flows in pure and saline water driven by thermal buoyancy alone, convective inversion 
must occur a t  some value of R between 0 and 4. The experiments of Bendell & 
Gebhart (1976) indicate that this occurs a t  about R = 0.28 for ice melting in pure 
water. 

As will later be seen, the approach to convective inversion from both R = 0 and 
R = is characterized by a rapid decrease in flow vigour and surface heat transfer. 
For conditions very near convective inversion, the tangential velocity is bi-directional, 
up near the surface and down in the outer portion of the flow region. As convective 
inversion is approached, bi-directional flow first appears as small local flow reversals. 
These occur near the surface for R decreasing from 4 and near the outer edge of the flow 
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FIG- 1. Co-ordinate systems for the two flow regimes: (a) net upward flow, for R near 0, and 
(b) net downward flow, for R near +. 

region for R increasing from 0. Such consequences were not evaluated in any detail by 
Gebhart & Mollendorf (1978) owing to insurmountable difficulties in the numerical 
scheme used. However, the experiments of Bendell & Gebhart (1976) and of Johnson 
& Mollendorf (1980) include many flows for which R lies between 0 and 4. 

The numerical treatment employed here has overcome many of these difficulties. 
Boundary-layer similarity solutions are presented across most of the range of R 
between 0 and 4. Calculated thermal transport is compared with the experimental 
results of Bendell & Gebhart (1976) and of Johnson & Mollendorf (1980). The values 
of R which first result in local flow reversal are determined for reversal near the surface 
and near the outer edge of the flow. Limits are also obtained on the conditions for 
convective inversion. 

2. Analysis 
For R between Oand 4, withalocal buoyancy-force reversal across the thermal region, 

two distinct flow regimes arise. The first is net upflow, figure 1 (a ) ,  with x positive in the 
upward direction and g acting in the negative x direction. The second flow regime, in 
figure 1 ( b ) ,  is net downward flow, with x positive in the downward direction and g 
acting in the positive x direction. Flows with values of R near 0 correspond to the first 
regime and those near correspond to the latter. For values of R near the centre of 
the interval, 0 < R < 4, it  is not apparent, apriori, which net flow direction results and 
which co-ordinate system applies. A t  the outset, it is postulated that the choice of 
co-ordinate system be dictated by the direction of net mass flow in the convection 
region. This assumption will later be examined in light of the calculated results. For the 
two co-ordinate systems, the net mass flow is in the positive x direction, but the sign 
of g is different. We will, therefore, adopt a ' & ' sign on g,  where ' + ' corresponds to 
net downflow and ' - ' corresponds to net upflow. 

The resulting laminar boundary-layer equations are written below. As indicated in 
figure 1,  x is the distance downstream from the leading edge along the surface, and 
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y is normal thereto. The velocities u(x ,  y )  and w(x, y )  are the tangential ( x )  and normal 
(y) components, and t (x ,  y)  is the local temperature: 

au av -+- = 0, 
ax ay 

u(x,  0) = v(x, 0) = u(x,co) = 0, t (x ,  0) = to and t(x,co) = t,. ( 3 )  

In  equations (2b)  and (2c)  P = g(p,-p)/p, is the local buoyancy force per unit 
volume and 11 and a are the kinematic viscosity and thermal diffusivity of the fluid, 
respectively. 

The buoyancy force in (2b)  is evaluated from ( 1 ) .  Then ( 2 )  and ( 3 )  are transformed 
in terms of a similarity space co-ordinate, 7, a stream function $(x,  y )  or f(7, x )  and 
temperature function q5(7, x), as follows: 

/ Im-p = pm(Sm,p)a(S,,p) “ q 5 - R p m . p ) -  IRlQ(sm*p)]  = p,aW; (4) 

f ” + 3 ~ - 2 f 1 2 ~ [ I q 5 - R I Q - J R I Q ]  = 0, P a )  
(8b)  

(8c) 

q5” + 3Prfq5‘ = 0, 

f (0) = f’(0) =f’(co) = l-q5(0) = # ( G o )  = 0. 

Similarity is seen in (8) to result for both R and q(s,,p) constant for an unstratified 
ambient, i.e. constant t,. Then f and q5 depend only on 7. The parameters then are R 
and q(sm,p) ,  in addition to the Prandtl number Pr. Note above that Gr, is here differ- 
ently defined than that by Gebhart & Mollendorf (1978). Here, the units of buoyancy 
are taken as alt,-t,I*rather than as altO-tmlQI,, where 

I,, = IOm Wdg. (9) 

In that formulation W becomes W / I ,  in (8 a ) .  Here, I ,  does not appear in (8 a )  and it is 
therefore not necessary to iteratively determine I,. when solving the equations. The 
variables of Gebhart & Mollendorf (1978), GM, are related to the present ones as 
follows : 

-b (10a)  7 = YGM I L l ~ i w  
q5‘ = q5dM l~uj lkiw ( l o b )  

f = f G M  / ~ c ~ l & M ,  f’ =fdllLI 11u918RI, 

f” = f G M  ~ l w ~ & M ,  I w  = (Iw)GM Irw16k. ( 1 0 4  

(10c) 
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ttn t ,  t o  

(a ) 

r,  t o  t m  

to tm  = t, 

(d )  

FIGURE 2. The effect of the specifted conditions to and t ,  on R = (t,,,-tm)/(t,,-tm), on the 
buoyancy force, F, and on flow direction. (a) F > 0, R < 0 and flow is up; (a) F < 0,  R > 0 and 
flow is down; (c )  F < 0, R = + and flow is down; ( d )  F > 0, R = 0 and flow is up. 

The role of R is crucial in the formulation given in (4)-(8) above. It is the quanti- 
tative expression of the effect of the extremum behaviour on the resulting flow 
characteristics. It places the specific temperature conditions, to and t,, with respect 
to tm(s, p ) .  Specifically, the value of R indicates the nature of the local variation and 
the direction of the buoyancy force F .  In  figure 2 several characteristic choices of to 
and t, are shown on a plot of p(t, s , p )  versus t for given values of s and p .  For figure 
2(a ,b) ,  where to > t,, F > 0 and H < 0, respectively, across the whole thermal dif- 
fusion region. Flow is up for (a )  and down for (b ) .  Note that R, < 0 and R, > 0. For 
to taken less than t,, relations reverse. For figure 2 (c), R = 4 and F < 0, except a t  the 
fluid-surface interface where F = 0; flow is down. 

However, a decrease of to, R < 4, will in fact cause a region of buoyancy-force 
reversal (P > 0) adjacent to the surface. This may lead to an upward local flow 
reversal there. For figure 2 (d), R = 0 and F > 0, and flow is upward. However, if t ,  is 
increased from t,, R > 0. Then F becomes negative in the outer part of the thermal 
region and a downward local flow reversal could occur there. 

Thus, in coming into the region 0 < R < 4 from each sfde, local buoyancy-force 
reversals arise. These may lead to local flow reversals. The net flow is down when 
coming in from the upper R limit, 4, and up when coming in from the lower limit, 0. 
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In  equation (8a)  the plus sign of the buoyancy force applies for net upflow, R near 0, 
and the minus sign applies for net downflow, R near 9. Clearly, sufficiently deep pene- 
tration into the region of 0 to 9, from either side, would result in convective inversion 
of the whole flow. It would be inversion from downflow to  upflow, coming in from 4, 
and the reverse coming in from zero. One measure of the tendency toward convective 
inversion would be the integral across the thermal diffusion region of F, or of W ,  as 
I;u in (9). This integral will be seen to approach zero from negative values for R < 9 and 
from positive ones for R > 0. 

The basic transport quantities in terms of similarity variables are : 

vG 
- 4x, y) = v(c,f+ cf’yb,) = - 4x (3f- Tf’), 

yvG3 
1 6x2 T ( 5 )  = ---f”(O), 

Nu, = h,x/k = [ - 4‘(0)/,/2] Gri, 

riz = Jom pudy = vpcf(co), 

where ~ ( x )  is the local surface shear stress, Nu, is the local Nusselt number, S(x) 
is the local boundary region thickness, M, is the local boundary region convection 
of momentum and m is the mass flow both per unit width of surface, all at down- 
stream location x. All of these quantities will be seen to behave much as when a 
Iinear temperature approximation of p is used, except as modified by the effect of 
changing R. 

Equations (8a)  and (8 b )  were solved subject to boundary conditions (8 c )  using two 
different numerical techniques. The first, used over the two ranges 0 < R < 0.15 and 
0.29 < R < 0.50, was a predictor-corrector shooting method. This scheme included 
automatic local sub-division of step size to maintain accuracy, while integrating from 
7 = 0 to T = Tedge. Initially unknown values of $J’(O) andf”(0) were guessed and sub- 
sequently corrected to satisfy the far boundary conditions. By perturbing the step 
size, AT, and the accuracy criterion, it was determined that AT = 0-05 and a predictor- 
corrector accuracy criterion of 10-10 were sufficient to obtain valuesf”(O), $ ‘ ( O ) ,  I, and 
f (cn) unchanging to five digits. The value of Tedge was increased to as large as 60 in some 
cases to maintain this level of convergence. With this numerical method it was deter- 
mined that flow reversal near the surface first occurred for R near 0.32. However, it was 
not possible to determine values of R for which outside flow reversal occurred. For 
R = 0.15 outside flow reversal was not found and the numerical scheme would not 
converge for 0.15 < R < 0.29. 
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To overcome this di%culty, a second numerical technique was used. The asymptotic 
solutions of equations (8a)  and ( 8 b )  for qi, f andf’ as q --f 03 can be shown to be 

where A ,  B and C are constants to be determined. Where two signs appear in ( 18 a)  and 
( 18 b) ,  the upper sign applies for upflow and the lower sign for downflow. The asymp- 
totic expressions in (18 )  are taken as exact at some sufficiently large value of 7 = qedge.  

The constants A ,  B and C are guessed and the expressions in (18) are used to calculate 
starting values off, qi and their derivatives. A predictor-corrector routine is then used 
with a fixed step size to integrate equations (8a) and (8b)  from ?,‘edge to 0. A ,  B and C 
are corrected such that the boundary conditions at  7 = 0 are met to within a prescribed 
accuracy, E .  By varying the step size, AT, the accuracy criterion, E ,  and qedge,  it  was 
determined that AT = - 0 . 0 5 , ~  = l0-lo and r]edge = 20 were adequate to obtain values 
off”(O), qi’(O), I, and f(m) unchanging to five digits. 

From ( 1 8 ~ )  it can be seen that A = f(co). From (18b)  and ( I ~ c ) ,  if A > 0, then as 
q+m,f’+Oand++O,butifA < O,thenasq-+m,f’-+mandQ,+m. A = f(m) > Ois 
therefore a necessary condition for the solution of equations (8 a )  and (8 b )  to meet the 
boundary conditions for f’  and Q, as + co. Accordingly, the co-ordinate system for 
each of the two flow regimes is oriented as in figure 1 ,  so that the net mass flow, f(m), is 
positive. 

This second numerical method permitted determination of the conditions for which 
local flow reversal occurs at the outer edge of the flow region. Outside flow reversal 
occurs when the net mass flow is upward. Therefore, the plus sign applies to the second 
term of equation (18 b) .  Since P r  appears as a factor in the exponent of the second term 
of (18b) ,  and Pr is about 12, the second term will be several orders of magnitude smaller 
than the first term. Therefore$ may be negative for large y if and only if C < 0. Thus, 
the conditions for incipient outside flow reversal can be inferred by determining the 
conditions for which C changes sign, i.e. a t  C = 0. 

Numerical results are presented well into the range of local buoyancy force reversal, 
coming in from both sides. Penetration was much simpler from above, R < 4. Then the 
tendency to flow reversal occurs near the surface and is strongly damped by viscous 
forces. From the other side, R > 0, reversal occurs in the outer part of the thermal 
region where viscous forces are very small. Numerical calculations in this range were 
found to be much more sensitive. However, in both ranges or R, solutions were most 
difficult to obtain for values of R which resulted in local flow reversal. 

3. Results 
The parameters of the calculations are q ( ~ ~ , p ) ,  Pr and R ( s , , p ,  to, t,). The value of 

q ( s m , p )  was taken as each of its two extreme values over the range of applicability of 
equation ( 1 ) .  They are q ( 0 , l )  = 1.894816 and q(0,lOOO) = 1.582950. For pure water at 
1000 bars, t ,  is about - 17-6 “C and the equilibrium melting point of ice is about 
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4 Pr 

1-894816 8.6 

11.6 

12.0 

13-6 

1.582 950 11-6 

R 

0.0 
0.10 
0.14 
0.0 
0-05 
0.10 
0.14 
0-15 
0.151 71  
0-151 72 
0.151 76 
0-151 99 
0-152 00 
0.0 
0.10 
0.15 
0.0 
0.10 
0.13 

f"(0) 
0.340 7 1 
0.267 69 
0.237 38 
0.31843 
0.28475 
0.24948 
0.22077 
0.21393 
0.21293 
0.21292 
0.21291 
0.21098 
0.21097 
0.307 09 
0.24025 
0.20570 
0.34221 
0.26642 
0.242 34 

- $'(O) 
0.96209 
0-844 58 
0.77227 
1.04697 
0.99001 
0.91836 
0.83992 
0.81084 
0.802 41 
0.802 32 
0.801 87 
0.809 04 
0.808 94 
1.094 47 
0.959 61 
0.848 09 
1.09707 
0.94827 
0.87657 

f (a) 
0.200 54 
0.154 25 
0.108 27 
0.18506 
0.167 91 
0.143 04 
0.10356 
0-073 98 
0-05346 
0.053 05 
0.051 02 
0.052 25 
0.051 81 
0.17740 
0-137 39 
0.07596 
0.19927 
0.141 85 
0.094 71 

I, I T n  

0.39088 0.01003 
0.294 18 0.005 30 
0.252 17 0.00296 
0.358 67 0*00805 
0-31587 0.00622 
0.270 49 0.00420 
0.232 29 0.002 30 
0.222 44 0.001 70 
0.22075 0.001 56 
0.22074 0.001 56 
0.22070 0.001 56 
0.21847 0.001 50 
0.21846 0.001 50 
0.342 87 0.007 16 
0.258 84 0.003 72 
0.213 14 0.001 49 
0.391 67 0.00989 
0.2 88 34 0.004 38 
0.254 3 8 0.002 41 

TABLE 1. Transport parameters for net upward flow adjacent to a vertical isothermal surface for 
various q, Pr and R. 

- 9.1 "C. Therefore, in thermodynamic equilibrium, temperature conditions do not 
arise for which R is between 0 and 4. However, in freezing, non-equilibrium surface 
temperature depressions may be great enough to result in values of R between 0 and 8. 
Such conditions have been observed at lower pressures. For example, Caldwell(l980) 
has reported cooling pure water to its extremum temperature, t,(O,p), a t  pressures as 
high as 380 bars. This amounts to subcooling of about 2°C below the equilibrium 
melting temperature of pure water a t  380 bars. Nevertheless, these conditions are not 
frequently encountered. The results are presented rather to assess the effect of different 
values of q on transport and to allow interpolation of the results for values of q at other 
salinities and pressures. 

The chosen values of Pr = 8.6, 11.6 and 13.6 apply for pure water at  1 atm at tem- 
perature levels of about 1 3 , 4  and 0 "C. The variation of Pr is mainly due to viscosity. 
Mollendorf, Kukulka & Gebhart (1980) summarize data showing that Pr is not 
sharply dependent on either s or p ,  to 40x0 and to 1000 bars. 

Calculations were carried out for q(0 , l )  for Pr = 8.6, 11.6 and 13.6 to assess the 
Prandtl number effect, then for q(0,lOOO) and Pr = 11.6 to determine the effect of q. 
For each of these four sets of q and Pr, calculations were done for various values of R, 
increasingly inward from both boundaries of the region 0 < R < +. For Pr = 11.6 and 
q(0, 1)) solutions were obtainedfor 0 < R < 0-151 76 and for 0.292 < R < +. Calculated 
transport parameters for net upward flow and net downward flow are summarized 
separately in tables 1 and 2, respectively. 

The numerical results, using the asymptotic method, for values of R in the lower 
range, are given in table 3. The computed values of A ,  B and C near the condition of 
outside flow reversal are shown for q(0 , l )  for Pr = 11.6 and 12.0. The radius of con- 
vergence of the ( A ,  B,  C )  vector is very small near R = 0.15, which necessitated very 
accurate initial guesses of A ,  B and C to obtain convergence. As seen in table 3, for 
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!7 Pr 

1.894816 8.6 

11.6 

13.6 

1.582950 11.6 

R f"(0) 
0.30 - 0.057 63 
0.32 -0.01341 
0.40 0.090 39 
0.50 0.185 45 
0.292 - 0.07983 
0.30 - 0.046 92 
0.32 - 0.008 25 
0-40 0.087 79 
0.50 0.17665 
0.30 - 0.042 28 
0.32 - 0.005 96 
0.40 0.08623 
0.50 0.17193 
0.29 - 0.048 07 
0.30 - 0.025 16 
0.32 0.009 36 
0.40 0.10644 
0.50 0.19671 

- #'(O) 
0.54803 
0.64803 
0.822 19 
0.94073 
0.51253 
0.61582 
0-7 14 39 
0-89922 
1-027 13 
0-65248 
0.751 37 
0-942 35 
1.07553 
0.653 01 
0.709 79 
0.78467 
0.949 54 
1.06494 

f(a) I* 
0.19232 0.01831 
0.19867 - 0.02928 
0.21904 - 0.148 17 
0.23784 - 0.26036 
0.17506 0.04817 
0.17727 0.01503 
0.18302 -0.02652 
0.201 72 - 0.13476 
0.21903 - 0.23743 
0.16987 0.01375 
0.17533 - 0.025 18 
0.19321 -0.12827 
0.209 79 - 0.226 29 
0.18784 0.01008 
0.19052 -0.01423 
0.19552 - 0.051 86 
0.211 35 - 0.16073 
0.22534 -0.26323 

I ,  
0.007 86 
0.008 54 
0.01 1 56 
0.01498 
0.006 33 
0.006 38 
0.006 95 
0.009 39 
0.012 16 
0.005 7 1 
0.006 23 
0.008 41 
0-01087 
0.007 60 
0.007 88 
0.008 50 
0.01086 
0.01330 

TABLE 2. Transport parameters for net downward flow adjacent to a vertical isothermal surface 
for various q, Pr and R. 

~ ~~~~ 

q Pr R 
1.894816 11.6 0.10 

0.15 
0.151 71 
0.151 72 
0.151 76 

12.0 0-15199 
0.15200 

~~ 

A 
0.14304 
0.07398 
0.05346 
0.053 05 
0.051 02 
0-052 25 
0.051 81 

~~ 

B 

146.17 
44768.0 

2.5165 
2.2689 
1.337 1 

2.6170 
2.331 6 

C 

0.15725 
0.031 366 
0.00029226 

-0.00026827 
- 0.003 002 9 

0.000 477 11 
- 0.000 11390 

TABLE 3. Constants for the asymptotic solution for large 7 for the indicated values of q, Pr and R. 

Pr = 11.6, C first becomes negative for R = 0.151 72. The computed velocity profile 
reversed from positive to negative a t  approximately 7 = 5.5. The value of R for which 
outside flow reversal first occurs was also determined for q(0 , l )  and Pr = 12.0, since 
these are exactly the values of q and film Prandtl number for ice melting in fresh water 
for R = 0.152, corresponding to t ,  = 4.75 "C. The results therefore indicate that for 
melting of ice in pure water, incipient outside flow reversal occurs for R = 0.152 or 
t ,  = 4.75 "C. Further, comparison with the results for Pr = 11.6 indicates that in- 
creasing Pr slightly increases the value of R for which local incipient outside flow 
reversal occurs. 

In  the higher range of R, incipient inside flow reversal may be detected in table 2 as 
the value of R for which f "(0) first becomes negative. This occurs a t  about R = 0.32, The 
plot off"(0) versus R in figure 3 indicates that the precise value depends on both q and 
Pr. For ice melting in fresh water, q = q ( 0 , l )  and the value of Pr a t  the film tempera- 
ture for R = 0-326 is equal to 11.7. For these conditions, incipient inside flow reversal 
occurs for R = 0.326 corresponding to t ,  = 5.98'C. Of course, the boundary-layer 
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FIGURE 3. The local shear stress parameter, f”(O), and I ,  variation with R. The broken curves 
are q = q(0, 1000) and Pr = 11.6. For the solid curves (-), p = q(0, 1) and the arrows indicate 
increasing Pr for Pr = 8-6, 11-6, and 13-6. 

assumptions strictly become inapplicable for bi-directional flow. Hence, the conditions 
for incipient local flow reversal are of considerable importance since they define the 
probable range of validity of the present analysis. 

The tangential velocity component distributions,f’, are shown in figure 4, for q ( 0 , l )  
and Pr = 11.6, for both ranges of R. Note that - f’ is plotted for the downward flows. 
Thereby the relative directions of the tangential velocity in each flow regime are 
properly oriented. Weakening upflow and downflow are seen, away from R = 0 and 4, 
respectively, as local buoyancy-force reversals increase. The distributions of the local 
buoyancy force, W(q) ,  are plotted in figure 5 .  

Consider first the simpler circumstance, the upper range of R with inside reversal. 
Local upflow reversals are seen near the surface in figure 4 for the general downflows 
which accompany both R = 0.30 and R = 0.292. The relation of W(q)  to this effect is 
clear in figure 5.  There W is seen to be negative over a large part of the boundaryregion. 
Even though it is large and positive over an appreciable region near the surface, only a 
small local flow reversal arises. This is due to the opposition of the large downward 
viscous forces in the fluid near the surface to the upward buoyancy there. For R = 0-32 
and 0.40 appreciable local flow reversal does not occur, in spite of large regions of 
positive W .  

I0 FLY 97 
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FIauRE 4. Distributions across the flow layer of the tangential component of velocity, f ’  for 
upward flow and -f’ for downward flow, for q(0, 1) and Pr = 11-6. For upflow the arrow indi- 
cates increasing R for R = 0, 0.10, 0.14, 0.15 and 0.15172. For downflow the arrows indicate 
increasing R for R = 0.292, 0.30, 0.32, 0.40 and 0.50. 

For R increasing from zero, there is a range of R for which there is no local flow 
reversal, even though W changes sign across the thermal region. These small buoyancy- 
force reversals lie around 7 = 1.5, well inside the flow region. A large viscous force 
there, together with high momentum, is able to overcome this effect. 

Another principal effect on the velocity field is seen in figure 6, where 3f - rlf’ is 
plotted across the boundary region. This quantity is proportional to v(x ,  y), the com- 
ponent of velocity normal to the surface, see (12), where 3f (a) becomes the entrain- 
ment velocity generated by the flow in the ambient medium. The flow decreases as 
buoyancy-force reversal increases and a change in direction occurs near the surface for 
R = 0.32 and R = 0.292. Note that, except €or this circumstance, the flow is toward 
the surface, with positive entrainment. A similar reversal in v(x, y) was observed by 
Mollendorf, Johnson & Gebhart (1980) for the axisymmetric and plane wall plumes 
in ambient water at  t,. The entrainment parameter, f ( a ~ ) ,  is also plotted versus R 
in figure 7. 

However, the effects of W reversal on other transport quantities are very large, 
especially for an inside reversal of W ,  where results were obt,ained for the wider range 
of R. The local surface shear stress parameterf”(O), plotted in figure 3, shows a dramatic 
decrease toward zero as convective inversion is approached from the upper range. It 
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0.5 1 .o 1.5 2-0 

v 
FIGURE 5. Distributions of the local buoyancy force, W ,  across the thermal diffusion region 
for q(0, 1) and Pr = 11.6. For net upward flow (-) the arrow indicates increasing R for 
R = 0, 0.10, 0.14, 0.15172. For net downward flow (---) the arrow indicates increasing R 
for R = 0.292, 0-30, 0.32, 0.40, 0.50. 

has actually changed direction for R = 0.32 and R = 0.292, even though the net flow is 
still strongly down. Such a reversal of surface shear stress before inversion does not 
occur as the inversion condition is approached in the lower range. There, local flow 
reversal occurs in the outer part of the boundary region. 

Also of interest in figure 3 is the variation with R of I,, the local momentum flux. By 
integrating equation (8a)  from 7 = 0 to 7 = co and applying the boundary conditions 
in (Sc), it can be shown that 

where for Iw, the plus sign applies for net upflow and the minus sign applies for net 
downflow. Note that I, is proportional to the tangential momentum convected down- 
stream a t  location z and is a measure of the vigour of the flow. Equation (19) shows that 
the rate a t  which momentum is imparted to the flow is proportional to the difference 
between the integral of the buoyancy force and the shear stress a t  the surface. Further, 
I, > 0,  necessarily. Then if f. I, < 0,  clearly f”(0) < 0. This occurs for R near 0.30. 
Figure 6 indicates that  for R near 0.15, I, decreases sharply with increasing R. This 
suggests an approach to convective inversion. However, for R near 0-30, the flow 
retains considerable vigour despite the net reversal in buoyancy force, I,, see table 2. 

10-2 
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" 1  

F I a m  6. Distributions of the normal and entraining velocity component for q(0, 1) and Pr = 
11.6. For net upward flow (-) the arrow indicates increasing R for R = 0, 0.10, 0.14, 0.15 and 
0.151 72. For net downward flow (---) the arrow indicates increasing R for R = 0.292, 0.30, 
0.32, 0.40 and 0.50. 

These very complicated implications of convective inversion are more clearly seen 
in figure 7 where I;, and f (co) are plotted as a function of R for each of the four q and Pr 
conditions considered. Clearly, I, goes sharply toward zero on both sides as convective 
inversion is approached. However, a most surprising result is seen at R = 0.30. For 
example, for q(0,l)  at Pr = 11.6, I, has become positive even though the net flow is 
still strongly downward (recall figure 4). Thus, the integrated upward buoyancy force 
near the surface, although larger, is damped by viscous forces and the smaller integral 
of downward buoyancy force in the outer region still determines the net flow direction. 

Thus, it  is not possible to directly surmise from these results the exact condition of 
convective inversion. Because of the boundary -layer approximations employed here, 
there is large uncertainty associated with extrapolation to conditions for which bi- 
directional flow occurs. However, if small local flow reversals are tolerated, the results 
indicate that I;, = 0 is, in fact, not a criterion for convective inversion. As inversion is 
approached from R = 0.50, I;, must actually become substantially positive before 
inversion will occur because of the shear force it must overcome near the surface. 

The ice-melting experiments of Bendell & Gebhart (1 976) indicated that net flow was 
up for t ,  = 5-5'C and down for 5.6'C. The condition for convective inversion was 
therefore t ,  = 5-55 "C or R, = 0.28. In  figure 7, Ri values, where I ,  = 0,  are marked 
on the curves of I, at 0.307 for q(0,l) for Pr = 11.6, The results of Bendell & Gebhart 
(1976) are therefore consistent with the present results which show that R, < Ri = 
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J I I 
0 0.1 0.2 

I 

R , =  0.307 & 
FIGURE 7. The mass flow, ~(co), and I ,  variations with R. The broken curves (---) are 
q = q(0, 1000) and Pr = 11.6. For the solid curves (-), q = q(0, 1) and the arrows indicate 
increasing Pr for Pr = 8.6, 11.6 and 13.6. 

0.307. However, a completely different result is suggested by the calculations in the 
lower range. I n  figure 7 there is a very rapid decrease in mass flow,f(co), as R increases 
near R = 0.15. If we may extrapolate these results, this suggests that the net mass flow 
becomes negative, i.e. convective inversion occurs near R = 0.16. 

Convergent numerical solutions could not be obtained for 0.15176 < R < 0.292. 
Hence it is not possible to make a definitive statement about the behaviour of the flow 
for values of R in this range. However, the results obtained for R = 0.151 76 and 
R = 0.292 suggest that  the flow may be bi-directional for 0.151 76 < R < 0.292. 

Buoyancy force reversals also cause large and important effects on thermal trans- 
port, as seen in figures 8 and 9. The temperature distributions, $(v) in 8, seem relatively 
little affected in form. However, their slope a t  7 = 0, - $ ' ( O ) ,  determines the local heat 
transfer rate. Figure 9 indicates large decreases in heat transfer as convective inversion 
is approached. The data of Bendell & Gebhart (1976) and of Johnson & Mollendorf 
(1 980) are plotted for comparison. Interface motion, or equivalently, interface blowing, 
known to be present in ice-melting experiments a t  low temperatures, has only a small 
effect on transport. Of the conditions considered here, the greatest interface velocity 
occurs a t  R = 0.5, for which the heat flux to the surface is the greatest. To assess this 
effect, the present analysis was modified to include interface blowing and the solution 
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1 .o 

0.5 

0 
0.5 1 .o 1 .S 2.0 

I) 

FIGURE 8. Distributions of the temperature variation, & T ) ,  across the thermal diffusion region 
for q = q(O, 1)  and P r  = 11.6. For net upward flow (-), the arrow indicates increasing R for 
R = 0, 0.10, 0.14, 0.15,0.15172. For net downward flow (---), the arrow indicates decreasing 
R for R = 0.50, 0.40, 0.32, 0.30, 0.292. 

was computed for R = 0.50 and Pr = 11-6. For these conditions, the surface heat 
transfer decreased by 5 yo. At lower values of R the blowing velocity is smaller, with a 
smaller effect on transport. Hence for ice-melting in pure water with 0 < R < 0.5, the 
computed results without interface blowing should be accurate within 5 %. The 
comparison of these results with the experimental ice-melting data is therefore 
appropriate. 

The value of - # ' ( O )  is related to the experimental average Nusselt number as 

The values of Nu, from Bendell & Gebhart (1976) have been multiplied by pice/pm to 
correct an error in the computation of Nu, from the measured melting rates. Note that 
the data levels of Pr lie in the range from 11.3 to 12.0. The r.m.s. difference for the ten 
data points shown is only 9.2 yo. This is certainly within the expected accuracy of the 
data. However, both sets of data are systematically slightly lower than the computed 
results. Since our calculations do not include the effects of interface blowing, the results 
may be as much as 5 % higher than the actual surface heat transfer rate for ice melting 
in pure water. We therefore conclude that the experimental data is systematically 
lower than the computed results primarily as a consequence of interface blowing effects. 



Buoyancy  force reversals in natural convection flows 

0.4 

295 

' 

4 

0 1  ' I I I I I 
0 0.1 0.2 0.3 0.4 0.5 
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FIGURE 9. The variation of the calculated heat transfer parameter, $'(O),  with R. The broken 
curves (---) are q = q(0, 1000) and Pr = 11.6. For the solid curves (-), q = q(0, 1) and 
the arrows indicate increasing Pr for Pr = 8.6, 11.6 and 13-6. Also shown are the data of Bendell 
& Gebhart (1976) and Johnson & Mollendorf (1980), determined for ice melting in pure water. 
Bendell & Gebhart's (1976) film Prandtl numbers are: a, 11.3; v,  11.5; 8, 11-7; m, 11-8; 
0, 11.9; @, 12.0; D, 12.1. Johnson & Mollendorf's (1960) film Prandtl numbersare: 4, 11-4; 
A, 11.7; ., 11.8; +, 12-0. 

Nevertheless, the present calculations are in good agreement with the data in both the 
upflow and downflow regions. 

4. Conclusions 
Computed results for laminar natural-convection flow adjacent to a vertical iso- 

thermal surface in cold water have been presented for a range of conditions for which 
the buoyancy force is bi-directional across the thermal layer. These results apply to a 
heated or cooled vertical isothermal surface in pure or saline water when 0 < R < 0.5. 
For pure water at  1 bar, incipient local flow reversal occurs near the outside of the flow 
region for R = 0.152. Incipient local flow reversal occurs near the surface for R = 0.326. 
This suggests that for 0.152 < R < 0-326 the flow is bi-directional near R = 0.152 and 
0.326 where the local flow reversals are small. However, in the centre of the interval 
0.152 < R < 0.326, the flow may be bi-directional or may have an entirely different 
character. It may, for example, be steady two-dimensional flow with recirculation or it 
may take a form which is time dependent. 

Convective inversion does not occur for Ri, i.e. when I, = 0, but rather for some 
R, < Ri for which I, > 0. This is due to the viscous forces near the surface which 
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sharply damp the effect of the buoyancy force reversal there. Here R, was found to be 
0.307 for Pr = 11.6 and q(0 , l ) .  The computed results imply that for fresh water at 1 
bar, convective inversion occurs at some value of R = R, between 0.152 and 0.292. The 
limits on R, and the conditions for incipient local flow reversal appear to be only weakly 
dependent on Pr and q(Sm,p). 

Surface heat transfer decreases rapidly as convective inversion is approached both 
from R = 0 and R = &. The lowest surface heat transfer rate is only 50 yo of that for 
both R = 0 and R = #, where the buoyancy force acts entirely in one direction. 

For ice melting in pure water a t  1 bar the range 0 < R < 0-5 corresponds to ambient 
water temperatures between 4 and 8 "C. At these low ambient temperatures the ice 
melt rate is slow and consequently the interface blowing velocity is small. Sample 
calculations including interface blowing indicate that the effect of interface blowing on 
transport is small for these conditions. Interface blowing reduces heat transfer by less 
than 5 yo. Although they do not include interface blowing, the computed results may 
therefore be applied to a vertical ice surface melting in pure water with only avery small 
loss in accuracy. 

The calculated surface heat transfer is in good agreement with that inferred from ice 
melting rates measured in the experiments of Bendell & Gebhart (1976) and Johnson 
& Mollendorf (1980), in both flow regimes. The calculated values of surface heat trans- 
fer imply, for example, that for a vertical ice surface 30 cm high melting in pure water 
at 1 bar, the melting rate decreases from 0.52 cm/h a t  t ,  = 4-0°C to 0.43 cm/h for 
t ,  = 5.7 "C. Although t ,  - to has been increased by 40 %, the melt rate decreases by 
17 %. In addition, the computed results predict that for ice melting in pure water at 1 
bar, the flow is bi-directional for t ,  between 4.75 "C and 5.98 "C and that convective 
inversion occurs at some ambient temperature between 4.75 "C and 5-81 "C. It was not 
possible to further refine this interval. However, this agrees with the experiments of 
Bendell & Gebhart (1976) which indicate that convective inversion occurs for t, 
between 5.5 and 5.6 "C. 

It may also be possible to apply the computed results to freezing of a vertical ice 
surface in pure water, provided the freezing rate is sufficiently slow that interface 
motion effects are small. For freezing, the interface motion is treated as interface 
suction. Since blowing reduces surface heat transfer, it is expected that suction in- 
creases it. It is likely, therefore, that the results computed with no interface suction 
will predict surface heat transfer rates that are slightly low. However, for low freezing 
rates the loss in accuracy should be small. 

These flows are found to be relatively very weak; particularly so for conditions near 
convective inversion. However, the resulting mass and thermal transport is highly 
sensitive to the exact values of the imposed temperature conditions, which suggests the 
possibility of early downstream laminar instability. 
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